This lecture is structured as follows :
There are two different grades in this course :
Here are some link that you can use to download and install stuff that we will need.
Hadley Wickham. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data
Zed A. Shaw. Learn Python the Hard Way: A Very Simple Introduction to the Terrifyingly Beautiful World of Computers and Code
Luciano Ramalho. Fluent Python
Robin Lovelace. Efficient R Programming by Colin Gillespie
Wes McKinney. Python for Data Analysis
https://www.anotherbookondatascience.com/
https://www.business-science.io/business/2018/10/08/python-and-r.html
https://www.practicaldatascience.org/html/vars_v_objects.html
https://learnanalyticshere.wordpress.com/2015/05/14/clash-of-the-titans-r-vs-python/
https://www.statmethods.net/input/datatypes.html
https://thomas-cokelaer.info/tutorials/python/lists.html
https://www.python.org/dev/peps/pep-0008/#introduction
https://www.datacamp.com/community/tutorials/r-tutorial-apply-family#as
https://towardsdatascience.com/the-ultimate-beginners-guide-to-numpy-f5a2f99aef54
https://towardsdatascience.com/getting-started-with-git-and-github-6fcd0f2d4ac6
https://docs.oracle.com/javase/tutorial/java/data/characters.html
https://www.tutorialspoint.com/python/python_reg_expressions.html
https://www.w3schools.com/python/python_ref_string.asp
https://thomas-cokelaer.info/tutorials/python/strings.html
http://eric.univ-lyon2.fr/~ricco/tanagra/fichiers/fr_Tanagra_R_Python_Data_Perfs.pdf
https://juba.github.io/tidyverse/06-tidyverse.html
https://atrebas.github.io/post/2019-03-03-datatable-dplyr/
http://python-simple.com/python-pandas/panda-intro.php
https://cran.r-project.org/web/packages/data.table/vignettes/datatable-sd-usage.html
https://medium.com/bigdatarepublic/advanced-pandas-optimize-speed-and-memory-a654b53be6c2
To be completed..